If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20w^2+73w+63=0
a = 20; b = 73; c = +63;
Δ = b2-4ac
Δ = 732-4·20·63
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{289}=17$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(73)-17}{2*20}=\frac{-90}{40} =-2+1/4 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(73)+17}{2*20}=\frac{-56}{40} =-1+2/5 $
| 0=3.7x+6 | | 468=x(x+20) | | 1.2x+16=4.8x-2 | | -6-(-24p)=66 | | 1628=740×x/740 | | 162=2(3^x) | | (x^2)+36x=49 | | x+2^x=0 | | -2+5=4n+2 | | y=50-0,5 | | n+2,n=5 | | 4(-8x+5)=-32×-26 | | 4(1-2x)+7x=-2(x-5)+1 | | 8+(4/5x)=29+(1/5x) | | 14/3x2+79/3+24=0 | | 9^6x=73 | | 2x-7=-4x=5 | | -6+x/4=15 | | -6(k-7)-(7k-2)=-6 | | 8x-39=14 | | (x*8)-5=(x*10)+2 | | 5x-9=96 | | 165=5(5u-2) | | 3x(x+2)+4(3x-5)=0 | | 3(2x+8)=8x-10 | | 16=16-8s | | -10(s+4)=-98 | | 165=5(5u-2 | | 7k-5=-+9 | | 3x+2/5=12 | | 165=(5u-2) | | 40+30n=220 |